Global Harmonization Through Collaboration

> RTCA SC-206 Aeronautical Information and Meteorological Data Link Services

Presented By:

Allan Hart

Date:

August 30, 2012

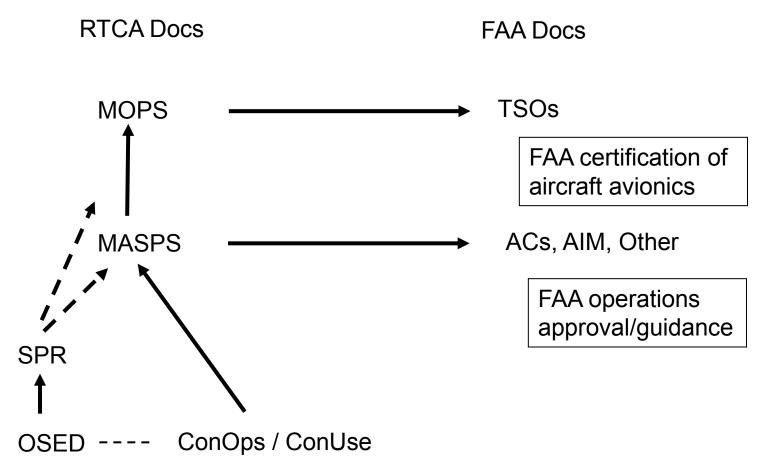
AIR TRANSPORTATION INFORMATION EXCHANGE CONFERENCE - (FEATURING AIXM, WXXM AND FIXM)

> August 28, 2012 - August 31, 2012 NOAA Auditorium and Science Center Silver Spring, Maryland

RTCA Special Committee 206

Air Transportation Information Exchange Conference - (featuring AIXM, WXXM and FIXM)

- Established Feb. 11, 2005 at the request of the FAA to address the future ATM concept of:
 - Establishing the aircraft as a primary participant in collaborative decision making (CDM).
 - Transitioning to a global Aeronautical Information Management (AIM) environment.
 - Using Broadcast, Demand, and Contract data link modes for accessing AIS/MET information.
 - Establishing the data link services as the normal (or primary) means for cockpit receipt & decisions using time-critical information
 - For the first two Terms of Reference (TOR) deliverables listed below, this SC worked in conjunction with EUROCAE WG-76
- Leadership
 - Co-Chairs: Rocky Stone, United Airlines and Allan Hart, Honeywell
 - Designated Federal Official: Richard Heuwinkel, FAA Weather Policy and Requirements
 - Secretary: Tom Evans, NASA
 - RTCA Program Director: Harold (Hal) Moses
- Sub-groups
 - #1 (Wake) Ed Johnson, NASA & Clark Lunsford, MITRE (Completed)
 - #3 (Architecture) Matt De Ris, North Star & Bill Carson, MITRE
 - #5 (MOPS) Stephanie Smith, Garmin & ???; and


#2 (ConUse) Tim Rahmes, Boeing & Ernie Dash AvMet (submitted);#4 (DO-252) Tim Rahmes, Boeing & Tammy Farrar, FAA;#6 (MASPS) TBD

Deliverable	Date	Status
Operational Service and Environment Description (OSED) for Aeronautical Information Services (AIS) and Meteorological (MET) Data Link Services	Dec 2007	Completed
Safety and Performance Requirements (SPR) for AIS and MET Data Link Services	Oct 2010	Completed
Wake Vortex, Air Traffic Management, and Weather Applications OSED	June 2012	Completed
Concept of Use of AIS and MET Data Link Services (supports MASPS)	June 2012	Submitted
AIS and MET Services Delivery Architecture Recommendations	December 2013	In works
Revise DO-252 to include performance standards for determining EDR and meteorological sensor reports and status	December 2013	Just starting
Minimum Operational Performance Standards (MOPS) for Flight Information Services – Broadcast (FIS-B) with Universal Access Transceiver (UAT)	March 2014	Just starting
Minimum Aviation System Performance Standards (MASPS) for AIS and MET Uplink Services	June 2014	Not started

RTCA Approach – FAA Use

RTCA DO-308 / EUROCAE ED-151

Air Transportation Information Exchange Conference - (featuring AIXM, WXXM and FIXM)

- Title: Operational Services and Environment Definition (OSED) for Aeronautical Information Services (AIS) and Meteorological (MET) Data Link Services
- Scope / Purpose / Objectives
 - Identify data link services that provide for:
 - Real-time distribution of aeronautical & meteorological information (AIS & MET) to the aircraft.
 - A foundation for the evolution that meets emerging operational needs of ATM. 0
 - Information for pilot decision support and CDM 0
 - Information for defining the Safety and Performance Requirements (SPR) and Interoperability documents. 0
 - Define data link services that are media independent
 - "The AIS intent is to augment and eventually replace the current AIRAC system based on the 28-day cycle".
- Data Link Modes

_

- Broadcast (1-way): Continuous, repeated transmission of AIS / MET information to all aircraft within communication range
- Demand (2-way): A method for the aircraft to request and receive specific information
- Contract (2-way): A method for the aircraft to request & receive specific information until the contract is terminated _
- AIS Data Link Services
 - Aeronautical Update (D-AUS): provides permanent & temporary changes applicable to a flight, independent of the stored data
 - Baseline Synchronization (D-BSS): provides more frequent updates of the stored database than the current AIRAC 28-day update cycle.
 - There are 2 types of Baseline Sync (complete & update) 0
- **Flight Environment** Phase of MET Data Link Services Preflight Ground Flight / Time Briefing **Decision Based Services** Operations & En Route / Cruise Landing Descent Delta Planning (D-WPDS) : >20 minutes Take off 0 Day/Hours Near-Term (D-WNDS): 3 – 20 minutes 0 Planning Decisions Hours Immediate (D-WIDS): < 3 minutes 0 Hour **Downlink & Crosslink Services Near-Term Decisions** 3 - 20 Minutes < 3 Minute Immediate Decisions
- **Expected Benefits**
 - Improved Safety, Capacity, Efficiency, Economic, & Environment

MET Examples

Candidate METLINK Product		MET Data		ot Decis Suppor		Refresh	Validity			n Usage	
		Category	WPDS	WNDS	WIDS	Rate (+)	(hours)	Category (#)			
Aerodrome Information					•						
* METAR	Р	Х	Х		24-48	0.5-1	А	В	[
* SPECI		Р	Х	Х		24-48	0.5-1	А	В	I	
* Local Special Report		Р	Х	Х	Х	24-48	0.5-1	А	В	I	
 Local Routine Report 		Р	Х	Х	Х	24-48	0.5-1	А	В	[
* Trend Forecast	Р	Х	Х		24-48	0.5-1	А		[
* TAF	Р	Х			1-6	6-30	А	В	[
Aerodrome Forecast - Tabula	Р	X			1-6	24					
Local Area Forecast	Т	Х			1-4	6					
* Aerodrome Warning		Т	X	Х		0-12	12				
* Wind Shear Warning		Т		Х	X	24-48	0.5-1				
 Forecast for Take off 		Р	X			48	0.5	А	В		
* Actual QNH	H P X X						0.5-1				
] indicates that this product is de	fined in ICAO	Annex 3 Legen	<u>d</u>								
MET Data Category	ision Support Classification		Со		Jsage Cate <u>a 2007/8)</u>	gory					
P Point Data	WPDS	Planning	Α	Prefli	ght plar	ning					
T Text Area	WNDS	Near-Term	в	Displ	ayed for	r crew and c	operators				
V Vector Graphic	Immediate	С									

RTCA DO-324 / EUROCAE ED-175

- Title: Safety and Performance Requirements (SPR) for Aeronautical Information Services (AIS) and Meteorological (MET) Data Link Services
- Scope / Purpose
 - Defines & allocates a set of baseline minima for the operational, safety, & performance requirements for AIS/MET data link services
 - Provides requirements for the OSED data link services, except AIS Baseline Sync & Wx Downlink & Crosslink.
 - Provides a framework & methodology for assessing implementation of data link systems
- SPR Content
 - Description of the operational objectives for the AIS/MET data link services per the Air Traffic Services objectives (ICAO Annex 11)
 - Overview of the environment and identification of conditions related to the provision and use of the AIS/MET data link services
 - Defined for the AIS / MET data link services:
 - o Common features: Modes & Operational Service Descriptions
 - Specific features: D-AUS, D-WPDS, D-WNPS, & D-WIDS
 - o Services Operational Requirements & Recommendations: Common & Specific
 - o Operational Safety Assessment (OSA) & Performance Assessment (OPA) results
 - Summaries of:
 - o Operational, Safety and Performance Requirements
 - Approach used for the Operational Safety Assessment (OSA) and Operational Performance Assessment (OPA)
 - Detail AIS/MET Results
 - Operational Safety Assessment (OSA) for ED1
 - Operational Performance Assessment (OPA) for ED1
- Defines a notional architecture to support safety & performance analysis
 - Safety analysis scope considers only errors introduced by the data link system; thus out of scope are:
 - The AIS / MET data sources;
 - Any message format, content & security reqs; &
 - \circ \quad The aircraft side, crew interaction & systems.

SPR Sample Requirements

Service	Mode	Domain	TT _{ET}	TT ₉₅	C _{RCP}	A _{RCP}	I _{RCP}
D-AUS	Broadcast	ENR	260 s	180 s	0.9999	0.999999	0.999999
		TMA	90 s	45 s	0.9999	0.999999	0.999999
		APT	120 s	60 s	0.9999	0.999999	0.999999
	Demand	ENR	260 s	180 s	0.999	0.99999	0.999999
		TMA	90 s	45 s	0.999	0.99999	0.999999
		APT	120 s	60 s	0.999	0.99999	0.999999
	Contract	ENR	260 s	180 s	0.9999	0.9999	0.999999
		TMA	90 s	45 s	0.999	0.9999	0.999999
		APT	120 s	60 s	0.9999	0.9999	0.999999
D-WPDS	Broadcast	ENR	260 s	180 s	0.999	0.999	0.999
		TMA	180 s	90 s	0.999	0.999	0.999
		APT	240 s	120 s	0.999	0.999	0.999
	Demand	ENR	440 s	210 s	0.999	0.999	0.999
		TMA	180 s	90 s	0.999	0.999	0.999
		APT	440 s	210 s	0.999	0.999	0.999
	Contract	ENR	260 s	180 s	0.999	0.999	0.999
		ТМА	180 s	90 s	0.999	0.999	0.999
		APT	240 s	120 s	0.999	0.999	0.999
D-WNDS	Broadcast	ENR	210 s	105 s	0.9999	0.9999	0.999
		TMA	90 s	45 s	0.999	0.9999	0.999
		APT	120 s	60 s	0.9999	0.9999	0.999
	Demand	ENR	210 s	105 s			0.9999
		TMA	90 s	45 s			0.9999
		APT	120 s	60 s			0.9999
	Contract	ENR	210 s	105 s	0.9999	0.999	0.9999
		TMA	90 s	45 s	0.9999	0.999	0.9999
		APT	120 s	60 s	0.9999	0.999	0.9999
D-WIDS	Broadcast	ENR		30 s	0.99999	0.99999	0.99998
		TMA		10 s	0.99999	0.99999	0.99998
		APT		30 s	0.99999	0.99999	0.99998
	Demand						
	Contract	ENR		30 s	0.99999	0.99999	0.99998
		TMA		10 s	0.99999	0.99999	0.99998
		Surface		30 s	0.99999	0.99999	0.99998
		Departure Arrival		10 s			

Air Transportation Information Exchange Conference - (featuring AIXM, WXXM and FIXM)

TT_{ET} = Transaction Expiration Time Maximum time for completion of a transaction

TT₉₅ = 95% Transaction Time

Time that 95% of all transactions are completed

C_{RCP} = Continuity

The probability that the transaction will be completed before the transaction expiration time

A_{RCP} = Availability of Use

The probability that the communication system between parties is in service when needed (both aircraft & ground system services)

I_{RCP} = Integrity

The probability (reliability) the data link service provider can transmit information (% of transactions completed with undetected errors)

RCP = Required Communication Performance

RTCA DO-339

Air Transportation Information Exchange Conference - (featuring AIXM, WXXM and FIXM)

Title: Aircraft Derived Meteorological Data via Data Link for Wake Vortex, Air Traffic Management, and Weather Applications Operational Services and Environmental Definition (OSED)

- Scope / Purpose
 - Describes the information content necessary to support a broad range of applications without constraining the data elements or rates to stay within the limits of any specific link (takes a link agnostic approach).
 - Describes a number of wake turbulence, air traffic management, and meteorological applications that can benefit from the downlink and crosslink of these aircraft-derived data.
 - Describes the specific data to be transmitted, including:
 - o Bit count and timing;
 - Acquisition of required data from standard data labels on standard aircraft data buses as well as provisions for participation by aircraft not equipped with data buses and/or flight management systems;
 - $\circ~$ Constraints under which the proposed service must operate; and
 - An overview of potentially applicable performance standards, error handling, system safety, and system security.
- OSED Content
 - Expected Benefits & Anticipated Constraints
 - System Overview & Architecture
 - $\circ~$ Data for wake turbulence, air traffic and weather applications
 - Service Level Description
 - o Desired Atmospheric Characterization
 - Proposed Meteorological Data Reception Frequencies
 - Reserved Status Bits
 - $\circ~$ Performance Standards and Error Handling
 - $\circ~$ Security overview of the service level application
 - Applications
 - Wake Turbulence

Air Traffic Management

Proposed Data Transmission

Availability of data from current aircraft buses Operational Assumptions and Recommendations Safety overview for the service level application Conceptual endpoint for service level application

Weather situational awareness & Meteorological

DO-339 Data Transmissions Characterize the Atmosphere for Real-Time Applications

Data Element	Airport and Terminal Maneuvering Area	En Route					
Atmospheric Data Elements							
Wind Speed							
Wind Direction	Every 50' of altitude	Every 500' of altitude					
Static Pressure	2	-					
Static Temperature	Every 1 NM in level flight	Every 5 NM in level flight					
Eddy Dissipation Rate							
Humidity/ Water Vapor							
Hazardous Weather Data Elements							
Wind Shear							
Microburst	On Condition						
Icing							
Peak Turbulence							
Aircraft Surveillance Data Elements							
Position							
Altitude							
Track	Transmitted at 1 Hz (rates suitable for use in real time decision support tools)						
Heading							
Vertical Rate							
True Airspeed							
Mach Number							
Aircraft Data Elements							
Aircraft ID							
Aircraft Type							
Weight	Transmitted in conjunction with atmospheric d	ata elements					
Wing Span							
Aircraft Configuration							
Wake Vortex Initial Circulation Strength							

Meteorological Parameters to be Transmitted Under the DO-339 Concept Include:

Air Transportation Information Exchange Conference - (featuring AIXM, WXXM and FIXM)

Data Field	# of bits	Range	LSB/Comments	Desired Reception Period (seconds)
Wind Speed	8	0255 knots	1 knot	3
Wind Direction	9	0359 degrees	1 degree See Note 1	3
Static Air Temperature	9	-128127.5 degrees C	0.5 degrees C	10
Static Air Pressure	11	02047 hPa	1 hPa See Note 2	10
Average Turbulence Metric (EDR1/3)	8	01.27 in EDR1/3 units	0.005 in EDR1/3 units. See Note 8	10
Humidity/water vapor	7	0100%	100/127 percent, See Note 5	20
Peak Turbulence Metric (EDR ^{1/3})	8	01.27 in EDR ^{1/3} units	0.005 in EDR ^{1/3} units. See Note 8	20 nominal 10 on triggering event
Icing Hazard Metric	2	00=none, 01=light 10=moderate, 11=severe	See note 7	20 nominal 10 on triggering event
Windsheer or Microburst Indication	2	00= none 01=winds hear 10=microburst		20 nominal 10 on triggering event
Volcanic Ash Hazard Metric	2	00=none, 01=light 10=moderate, 11=severe	See note 8	20 nominal 10 on triggering event

Notes:

- (1) The time and location of each observation is included with the transmitted parameters
- (2) Vertical Wind Speed is a desired parameter for some potential applications. However, aircraft-derived vertical winds are often "noisy" and require specialized filtering. This may diminish usability.

ConUse

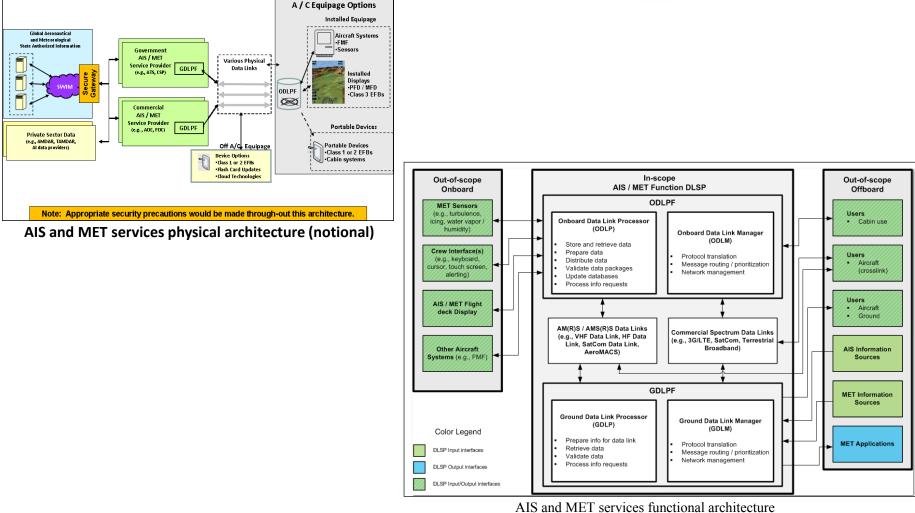
Air Transportation Information Exchange Conference - (featuring AIXM, WXXM and FIXM)

Title: Concept of Use (ConUse) for Aeronautical Information Services (AIS) & Meteorological (MET) Data Link Services

- Scope / Purpose
 - Describes system concepts and user applications for using data link services for communicating Aeronautical (AIS) and meteorological (MET) information to and from aircraft.
- ConUse Content
 - Stakeholder Identification
 - Services Justification
 - Change Processes
 - Operations & Equipage
 - Cultural Changes Required
 - Other Considerations
 - Two Key Appendix
 - Appendix B: Use Case Descriptions

Operational Needs & Proposed Services Operational Concept

Standards & Policies Required Personnel Skill Changes Required


Appendix C: AIS, MET, & ATM Tables

- Key Concept
 - Two categories of AIS & MET data link services are discussed:
 - Category 1: A compilation of systems used as the primary means for communicating AIS and MET information services to and from aircraft to meet aviation regulatory requirements.
 - ✓ Users may act on information delivered by Category 1 Services without any need for confirming its validity.
 - Category 2: A compilation of systems that can be useful for communications to and from aircraft on which to base operational decisions.
 - ✓ Should not be used as the only source of AIS and MET information meeting aviation regulatory requirements

ConUse Architecture

AIS, MET, & ATM Information Categories

								Flight Sc	enario							Se	rvices		
Information			Situa	tional Aw	areness			Haz	ard Avoid	ance	Dive	rsion	Optimiz	e Flight		MET		A	IS
Categories			Term	En				Term	En l	Route		Emergency	Surface/						
Cuttegories	Pre Flt	Sfc Ops	Ops	Route	OCN	Polar	RMT	Ops	Route Dev	Alt Chng	Destination	e.g., medical	Terminal	En Route	WPDS	WNDS	WIDS	BSS	AUS
MET Examples																			
Airport/ Aerodrome Wx	Х	Х	Х	Х	Х	Х	Х				Х	Х	Х	Х	Х	Х	Х		
Hazardous Weather			<u>I</u>				1	•	•							1			
Convective Activity	X	X	X	X	X	X	X	Х	Х	X	Х	Х	Х	Х	Х	Х			
Turbulence	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			
Icing/Freezing	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			
Microburst	Х	Х	Х					Х			Х	Х	Х			Х	Х		
Wind shear	Х	Х	Х					Х			Х	Х	Х			Х	Х		
Wake Turbulence	Х	Х	Х	Х	Х	Х	Х	Х			Х	Х	Х			Х	Х		
Volcanic Ash	X			X	X	X	X		Х	Х				Х	Х	X	X		
Winds/Temps					•							•							
Flight Path	Х	l		X	X	X	X		Х	X				Х	Х	Х			
Arrival/Departure	Х	Х	Х								Х	Х	Х		Х	Х			
BSS Examples										·									
Aerodrome Map	Х	X	X	1	1	<u> </u>	r		<u> </u>	<u> </u>	Х	Х	Х	<u> </u>				Х	
Aerodrome Info	Х	Х	Х								Х	Х	Х					Х	
Airspace and Com	Х	Х	Х	Х	Х	Х	Х				Х	Х	Х	Х				Х	
Electronic Charts	Х	Х	Х	Х	Х	Х	Х				Х	Х	Х	Х				Х	
Geopolitical	Х		1	Х	Х	Х	Х				Х			Х				Х	
Magnetic Field/Flux																		Х	
Navigation	Х	Х	Х	Х	Х	Х	Х				Х	Х	Х	Х				Х	
Obstacle	Х	Х	Х	Х	Х	Х	Х				Х	Х	Х	Х				Х	
Terrain	Х	Х	Х	Х	Х	Х	Х				Х	Х	Х	Х				Х	
Miscellaneous																		Х	
AUS Examples																			
Aerodrome	Х	Х	Х	Х	Х			Х			Х	Х	Х						Х
Airspace	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х					Х
Services	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х					Х
Points & NAVAIDs	Х		Х	Х	Х	Х													Х
Communications	Х	Х	Х	Х	Х	Х					Х	Х							Х
Surveillance	Х	Х	Х	Х	Х	Х					Х	Х	Х	Х					Х
Procedures	Х	Х						Х			Х	Х		Х					Х
Routes	Х			Х	Х	Х	Х		Х	Х	Х	Х	Х	Х					X
Obstacles	Х	Х	Х	Х	Х	Х		Х			Х	Х	Х						Х
Miscellaneous																			X
Air Traffic Management	t Exampl	es																	
Traffic Flow Info	Х	Х	Х	Х	Х	Х	Х				Х		Х	Х					Х
ATC Procedures	Х	Х	Х	Х	Х	Х	Х				Х		Х	Х					X

Services Delivery Architecture

1. Introduction

2. Data Link Concept

- 1. Intended Use
- 2. Concept Architecture
- 3. Modes of Operation
- 4. Services Under Consideration

3. Architecture

- 1. Architecture Trade Studies
- 2. Architecture Recommendations

4. Information Quality Assurance

- 1. Current Info Quality Process
 - a. AIS
 - b. MET
- 2. Info Quality Recommendations
- 5. Security
 - 1. Current Approach to Security
 - 2. Security Recommendations
- 6. Allocation of Use to Data Link
 - 1. Current Methods of Data Link Allocation
 - 2. Data Link Allocation Recommendations
 - a. Purpose of Process
 - b. DL Analysis Process
 - c. Data Link Allocation Process

Air Transportation Information Exchange Conference - (featuring AIXM, WXXM and FIXM)

- d. Procedure Steps
 - 1) Identify Use and Apply to Use Case
 - 2) Define Use Case Operational Characteristic
 - 3) Evaluate DLs for Consideration
 - 4) Determine DLs that Align with Use Case
 - 5) Define Messages
 - 6) Define Use Case Tech Chars
 - 7) Data Link Models
 - 8) Define Qualitative Operational Characteristics
 - 9) Evaluate Model Results Against Use Case Performance Requirements and Qualitative Considerations
 - 10) Develop Recommendations
 - 11) Report Results and Recommendations
- 7. Use Case Process Analyses
 - 1. Wake/ATM/MET OSED
 - 2. ConUse for AIS/MET Data Link Services
 - 3. Other Use Cases
- 8. General DL Architecture Recommendations

Appendix

- A. Membership
- B. Use Cases Applied to Analysis
- C. Metrics Matrix
- D. Use Case Results Template

Analysis Process

Air Ti Exch AIXN

Roadmap & Status

	2012		2013			2014	2015
<u>Deliverables</u>	June July Aug Sept Oct Nov Dec	Jan Feb Mar Apr May ATL Boulder or PHX		Nov Dec Jan Fe	2b Mar Apr May	June July Aug Sept Oct N	
OSED (SG1)	PMC Determine the work program	for including the specific info	rmation that was taken ou	t with respect to	a follow on MAS	PS &/or MOPS for wake, ATN	1 & MET apps.
ConUse (SG2)	PMC Information u	ised as a basis for the MASPS					
Architecture (SG3)	(1)		Fapp	Fres	РМС		
DO-252A Update (SG4)			Fapp	Fres	РМС		
MOPS (FIS-B/UAT) (SG5)				Fapp	Fres	РМС	
MASPS AIS/MET Uplink (SG6)					Fapp	Fres PMC	
	(1) Report to the PMC on the proces	ss for alternative suitability ar	nd a representation of the	intended use of	the services defi	ned in the OSED (Wake, ATM	, and MET)
Faap = FRAC approval							·
Fres = FRAC resolution							
Meeting months and location							

- SG-3 Architecture: # of sub-teams are working document, including SG-1
- SG-4 DO-252: Leadership setup, defining scope *and membership*
- SG-5 MOPS for FIS-B w/UAT: Leadership setup, defining scope <u>& membership</u>
- SG-6 MASPS AIS/MET Uplink: Pursuing leadership and membership

Next Meeting

Air Transportation Information Exchange Conference - (featuring AIXM, WXXM and FIXM)

The next meeting will be held at the RTCA facilities:

- •1150 18th Street, NW, Suite 910 Washington, DC 20036
- •Monday October 22 through Friday October 26, 2012

Proposed Agenda

- Monday: 9:00 AM Opening Plenary Chairmen's remarks, host's comments & attendees' introductions
 - Review and approval of previous meeting minutes and this meeting's agenda Action item review
 - Sub-groups status & plan
 - Sub-groups status & plan
 - Presentations (focus on industry coordination)

Monday Afternoon or Tuesday Morning (8:30 AM) through Thursday 5:00 PM Sub-Group meetings

Friday: 8:30 AM - 1:00 PM Closing Plenary

SGs reports Presentations Industry Coordination Action item review Future meeting plans and dates Other business

Air Transportation Information Exchange Conference - (featuring AIXM, WXXM and FIXM)

Contact Information

Allan Hart Honeywell Aerospace Manager, Advance Technology Engineering 21111 N. 19th Avenue (M/S 2J35a5) Phoenix AZ 85027 Office Phone – 1.602.436.1098 Cell – 1.602.317.5414

